Indian Statistical Institute, Bangalore

B. Math. First Year, Second Semester Algebra II (Linear Algebra)

Final Examination Maximum marks: 100 Date : April 26, 2010 Time: 3 hours

1. Prove that $\mathcal{B} = \{b_1, b_2, b_3\}$ is a basis for \mathbb{R}^3 , where

$$b_1 = \begin{pmatrix} 2\\4\\0 \end{pmatrix}, b_2 = \begin{pmatrix} 2\\1\\2 \end{pmatrix}, b_3 = \begin{pmatrix} 6\\2\\2 \end{pmatrix}.$$

Express the vector x as a linear combination of these basis vectors, where

$$x = \left(\begin{array}{c} 1\\2\\3\end{array}\right).$$

[10]

- 2. Let \mathcal{G} be a 7 dimensional vector space over \mathbb{R} . Suppose \mathcal{H} , \mathcal{K} are subspaces of \mathcal{G} such that $\dim(\mathcal{H}) = 4$, $\dim(\mathcal{K}) = 5$. Show that $\dim(\mathcal{H} \cap \mathcal{K}) \ge 2$. [10]
- 3. Let V, W be finite dimensional vector spaces over \mathbb{R} . Suppose $T: V \to W$ is a linear map. Show that

dim
$$(V) = \dim (\text{Ker } (T)) + \dim(\text{Range}(T)).$$

(Here Ker $(T) = \{x : T(x) = 0.\}$). [20]

4. Let $M_n(\mathbb{C})$ be the space of $n \times n$ complex matrices, considered as a vector space over the field of complex numbers. Show that

$$\langle A, B \rangle = \operatorname{trace}(A^*B)$$

defines an inner product on $M_n(\mathbb{C})$. Obtain an ortho-normal basis for $M_n(\mathbb{C})$. . [10]

P.T. O.

- 5. Let B be an $n \times n$ self-adjoint matrix. Show that there exists a polynomial q such that q(B) = |B|. (Here $|B| = (B^*B)^{\frac{1}{2}}$). [15]
- 6. Suppose $C \in M_n(\mathbb{C})$. Show that C decomposes uniquely as C = A + iB where A, B are self-adjoint matrices. Here A is known as the real part of C and B is known as the imaginary part of C. Now show that C is normal iff A and B commute. [15]
- 7. Suppose $A = [a_{ij}]_{1 \le i,j \le n}$ is a positive semidefinite matrix and one of its diagonal entries $a_{ii} = 0$. Then show that $a_{ij} = a_{ji} = 0$ for $1 \le j \le n$. [10]
- 8. Diagonalize following matrices and obtain polar decompositions for them.

$$M = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}, N = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

[20]